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ABSTRACT: Motor imagery (MI), defined as the mental implementation of an action in the absence of 

movement or muscle activation, is a rehabilitation technique that offers a means to replace or restore lost motor 

function in stroke patients when used in conjunction with conventional physiotherapy procedures. This article 

briefly reviews the concepts and neural correlates of MI in order to promote improved understanding, as well 

as to enhance the clinical utility of MI-based rehabilitation regimens. We specifically highlight the role of the 

cerebellum and basal ganglia, premotor, supplementary motor, and prefrontal areas, primary motor cortex, 

and parietal cortex. Additionally, we examine the recent literature related to MI and its potential as a 

therapeutic technique in both upper and lower limb stroke rehabilitation.  
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Degenerative processes are the primary underlying cause 

of several conditions generally associated with aging, 

including cardiovascular disease, stroke, and cancer [1]. 

Of these conditions, stroke remains one of the major 

worldwide causes of mortality, and is a leading cause of 

serious long-term disability in the United States [2]. Even 

after completing standard rehabilitation regimens, 50-

60% of stroke patients suffer from some measure of motor 

impairment [3]. Of this population, older stroke patients 

are often substantially impaired in their ability to perform 

activities of daily living, thus necessitating long-term 

rehabilitation services [4]. It is therefore crucial to 

examine novel post-stroke therapeutic techniques in order 

to facilitate effective stroke recovery. Constraint-induced 

movement therapy (CIMT) is a popular rehabilitation 

strategy for many stroke patients, and forces the use of 

affected muscles by restricting the use of unaffected limbs 

[5]. However, severely injured patients are often devoid 

of even residual movement in affected limbs; thus, CIMT 

and other movement-based therapies cannot be employed 

to assist these patients. This limitation has compelled the 

scientific community to explore other therapeutic 

techniques, including motor imagery (MI) training [6].  

MI is a popular research focus in the fields of 

neurophysiology, neuroimaging, neurology, and 

psychology. Additionally, it has been developed as a 

foundation for neurorehabilitation and brain-machine and 

brain-computer interfaces [7]. However, a detailed 
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description of MI and its application in stroke 

rehabilitation is lacking. Therefore, the aim of this review 

is to identify and examine the roles of neural correlates 

underlying MI, and to examine the latest literature 

associated with MI-based stroke rehabilitation. 

 

Concept of Motor Imagery 

 

MI involves the mental execution of an action in the 

absence of movement, and it activates neural structures 

and processes similar to those activated when certain 

movements are actually performed [8, 9]. For example, in 

either a first or third person perspective, an individual can 

imagine throwing a ball, without actually performing the 

movement. In doing so, they activate portions of cerebral 

cortex related to initiating, though not executing, the 

throwing motion. Since stroke patients are often unable to 

perform particular movements, MI is an attractive means 

of “relearning” how to execute certain actions with 

affected limbs, provided patients have sufficient cognitive 

abilities to comprehend and carry out MI task instructions.  

Presumably, the signal flow in a motor control system 

can be divided into four stages: 1) a motor signal is 

generated in the motor cortex, 2) the motor command 

travels through the spinal cord, 3) the motor command 

activates specific muscles, and 4) conscious and 

unconscious sensory feedback is transmitted back to the 

brain after muscle contraction, terminating in 

somatosensory cortex. This flow of information 

constitutes the sensory-motor closed loop. In the planning 

stage of motor control, information regarding the potential 

movement is acquired, but explicit specification of motor 

parameters is excluded [10]. The motor command is 

preceded by a preparation stage, and the organism waits 

for an execution cue before movement is permitted [10]. 

MI corresponds to activation of neural representations of 

potential movement, and is considered functionally 

equivalent to the planning and preparation stages (though 

not the execution stage) of motor control [7, 11, 12]. This 

suggests that MI and motor execution are generated 

through analogous computational steps [13], and involve 

similar brain structures. Indeed, imagining a simple, 

highly automatic movement often takes a similar amount 

of time as compared to the amount of time necessary to 

execute that same movement, though more variation 

exists for increasingly complex movements [14].  

 

Neural Correlates of MI and Clinical Implications 

 

MI is a promising neurorehabilitation technique, 

particularly for stroke rehabilitation, because it appears to 

involve the control mechanisms and neural substrates 

employed in actual movement [8]. Researchers have been 

exploring the brain structures involved in MI for over two 

decades, and although the precise neural correlates remain 

unclear, much progress has been made [7]. A plethora of 

neuroimaging studies have demonstrated that the cortical 

and subcortical regions activated during MI tasks 

substantially overlap with those involved in movement 

execution. In the subsequent sections, we will briefly 

review the neural correlates of MI and, when possible, the 

impact of stroke on these brain structures and subjects’ 

abilities to perform MI. 

 

Cerebellum and Basal Ganglia  

 

Generally, portions of the cerebral cortex considered to be 

involved with motor control include the primary motor 

cortex (M1), the supplementary motor area (SMA), and 

the premotor cortex (PMC). These cortical areas are 

closely linked to the cerebellum and basal ganglia, 

resulting in extensive feedback loop systems [15]. These 

loop systems permit the coordination, cortical modulation, 

and feedback control that have been considered the 

primary functions of the cerebellum [16, 17], yet until 

recently, the manner in which the cerebellum influences 

MI tasks was unclear. A 2016 study using cerebellar 

transcranial direct current stimulation demonstrated that 

the cerebellum has an inhibitory effect on MI, and 

functions by preventing efferent impulses (induced by 

MI) from reaching medullary and skeletal muscular levels 

[18]. As it relates to stroke, few studies have directly 

examined the impact of cerebellar lesions on MI abilities. 

In a small transcranial magnetic stimulation study of eight 

patients with unilateral cerebellar lesions due to 

thromboembolic stroke, ischemia in the posterior inferior 

cerebellar artery territory decreased the excitability of 

motor cortex, and resulted in diminished MI abilities as 

compared to a group of aged-matched, healthy controls 

[19]. An earlier study of cerebellar stroke substantiated 

these findings [20]. 

In addition to cerebellar activation, MI has been shown 

to recruit subcortical motor areas such as the basal ganglia 

[21]. It has long been known that patients with 

Parkinson’s disease demonstrate reduced ability to 

perform MI tasks [22-24]. Although the substantia nigra 

damage seen in Parkinson’s patients is not functionally 

equivalent to stroke-induced basal ganglia damage, these 

studies highlight the importance of the basal ganglia in 

MI-based tasks [25]. Additionally, in a study of 37 

hemiplegic stroke patients, there was a correlation 

between presence of putamen damage and diminished MI 

capacity [26]. Further, a recent systematic review 

indicated that basal ganglia damage, specifically to the 

putamen, may negatively impact MI abilities [27]. 

 

 

 



Tong Y., et al                                                                                                        Motor Imagery for Stroke Rehabilitation 

Aging and Disease • Volume 8, Number 3, June 2017                                                                               366 

 

Premotor, Supplementary Motor, and Prefrontal Areas  

 

MI-induced brain activity typically involves premotor and 

supplementary motor areas, the two brain regions most 

consistently implicated in MI processes [7]. Indeed, a 

recent study on MI and motor execution in stroke patients 

confirmed the activation of the PMC and SMA in MI and 

motor execution in a control population [28]. Additionally, 

previous studies have indicated that premotor and 

supplementary motor areas play a key role in the planning, 

preparation, and control of movement [10, 28, 29]. Some 

investigators have found that locations of SMA activity in 

MI only partially overlap with those of motor execution 

[30], implying that portions of the SMA may play a 

specific role in MI alone [31]. A study using 

magnetoencephalography (MEG) [32] suggests that some 

neurons of the SMA inhibit M1 activity, thereby 

preventing motor execution. This is in accordance with 

the results of an earlier study that demonstrated the 

suppressive effect of the SMA on M1 [33]. More recently, 

the influence of the SMA on M1 activity was examined in 

an effective connectivity analysis of the damaged 

(experimental) and undamaged (control) cerebral 

hemispheres of 10 stroke patients [34]. After MI- and 

motor execution- based tasks, the authors suggested a 

suppressive influence of SMA on M1 during MI, whereas 

the effect of SMA on M1 was unrestricted during motor 

execution. 

Overlapping activity of brain regions during MI and 

motor execution has also been identified in the PMC [35]. 

Particularly, the dorsal portion of the PMC (PMCd) has 

been shown to be activated in MI [30], and has been 

posited as the underlying source of both MI and motor 

execution [34]. Though discrepancies have been reported 

regarding the role of more ventral portions of the PMC 

(PMCv), a 1995 study demonstrated activation of the 

PMCv during both MI and motor execution [30]. A 2014 

study also confirmed activity in the left PMCv during MI 

of upper and lower extremities [36]. Additionally, studies 

on primates have shown that both the PMCd and the 

PMCv play a key role in the planning, preparation, and 

execution of motor actions [37]. Despite the overlap, 

regions of the PMC have been specifically implicated in 

processes likely related to MI. For example, the PMCd has 

been linked to impulse control, which is believed to limit 

premature motor response initiation and may be a key 

element in the divergence between MI and motor 

execution [38, 39]. Further, in a study on motor 

imagination in amputees, PMCd activation appeared more 

rostral in MI than in motor execution, suggesting that 

certain neurons of the PMC are related solely to MI tasks 

[40].  

Frontal cognitive regions have also been examined in 

neuroimaging studies of MI that ultimately indicated 

various roles of prefrontal areas. Though prefrontal 

activity is typically considered in relation to cognitive 

processes [41], both the ventral prefrontal cortex and the 

anterior cingulate cortex have been associated with the 

inhibitory control of movement during the preparation 

stage of motor control [39, 42]. Additionally, several 

studies have employed functional magnetic resonance 

imaging (fMRI) to examine novel roles of prefrontal areas 

in MI tasks related to familiar and unfamiliar objects [43], 

imagined force generation [44], and eccentric and 

concentric muscle contraction [45]. These, among others, 

have confirmed the role of prefrontal areas in MI tasks. 

As it relates to stroke, prefrontal lesions have been shown 

to impact the vividness of MI [26]; however, the 

relationship between prefrontal cortex and MI should be 

further explored in stroke patients, in order to isolate the 

specific effects of prefrontal cognitive regions on MI-

related processes. 

 

Primary Motor Cortex 

 

Activation of M1 during MI has historically been more 

controversial in the literature than the well established 

activation of premotor areas [31], and typically, M1 

activation during MI tasks has been considered minor in 

comparison to M1 activation during motor execution [46]. 

As mentioned previously, MI is functionally equivalent to 

motor preparation, which is typically succeeded by motor 

execution. The debate surrounding the significance of M1 

to MI training was initially due to the conflicting results 

of several studies [7], some of which indicated M1 

activation during MI tasks, and some of which did not. 

However, recent examinations have firmly supported the 

notion that M1 is activated during MI tasks [28, 47-50], 

though the direct role of M1 in facilitating muscle 

contraction is less clear. In patients with limited residual 

post-stroke motor function, MI activation of M1 may be 

beneficial for “relearning” motor patterns disrupted by 

stroke [51]. Indeed, Szameitat et al. concluded that due to 

its ability to activate M1, MI is the most promising 

approach to activating the motor system in hemiparetic 

stroke patients (when compared with passive movement 

and movement observation).  

However, a small study of patients at least eight 

months removed from stroke demonstrated that MI does 

not appear to significantly activate the ipsilesional M1 

(i.e. the stroke-damaged M1), indicating that the role of 

MI in directly facilitating motor output is limited [52]. 

Conversely, in a 2009 fMRI study of well-recovered 

stroke patients, Sharma et al. clearly identified M1 

activation during an MI-based finger–thumb opposition 

task [50]. Although M1 was active during MI, the motor 

system remained disordered, often with bilateral M1 and 

PMCd involvement. The group therefore concluded that 
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components upstream of M1 might be more effectively 

targeted by rehabilitation strategies, particularly in 

severely affected patients.  

A more recent analysis of hemiplegic stroke patients 

examined the functional connectivity between ipsilesional 

M1 and the entire brain using resting state fMRI [53]. As 

expected, stroke altered functional connectivity and 

disrupted motor pathways (as compared to healthy 

controls). Though neural reorganization is not the topic of 

this review, Zhang et al. demonstrated augmented 

functional connectivity between ipsilesional and 

contralesional M1 and diminished functional connectivity 

between ipsilesional M1 and ipsilesional SMA (shown to 

be inhibitory to M1, discussed in Section 3.2) after MI 

training in addition to conventional rehabilitation. Despite 

the lack of an appropriate control population, the group 

uncovered a statistically significant correlation between 

functional connectivity changes and Fugl Meyer 

Assessment (FMA) score changes after MI training, 

suggesting a possible, though preliminary, benefit to MI. 

Clearly, further research is needed to specify the role of 

M1 activation in MI training for stroke rehabilitation. 

 

Parietal Cortex 

 

The parietal cortex plays important roles in both sensory 

integration [9] and motor execution [54, 55], and evidence 

strongly suggests that the parietal cortex substantially 

influences MI. Though parietal regions are activated 

during both MI and movement execution, a 2000 fMRI 

study demonstrated that regions of parietal cortex are 

differentially activated during real and imagined hand 

movements [35]. In a more recent study, the posterior 

parietal cortex (PPC) was revealed to be more active 

during imagined movements than during motor execution 

[40]. Further, many neuroimaging studies have 

established the presence of MI-induced PPC activity, as 

well as MI deficits following PPC damage [7, 56]. Parietal 

regions such as the inferior parietal lobule [57], the 

supramarginal gyrus [58], and the superior parietal lobule 

[59] have also been implicated in MI tasks. Highlighting 

the necessity of intact parietal structures for vivid MI, a 

2016 systematic review indicated that subjects with 

parietal lobe damage were the most substantially impaired 

in their ability to perform MI [27].  

 

MI for Post-Stroke Rehabilitation  

 

Upper Limb Training 

 

Despite a substantial body of literature and knowledge, no 

neuroprotective treatments are currently employed to 

combat stroke [60]. Thus, we focus on MI as a promising 

neurorehabilitation technique for stroke patients, 

particularly considering the analogous pre-processing 

steps and structural overlap between MI and movement 

execution. Recent investigations have focused primarily 

on MI in conjunction with other types of therapies for 

optimal motor recovery, and most studies regarding MI-

based neurorehabilitation have evaluated its efficacy in 

relearning tasks performed with the upper extremities. In 

a rehabilitation study of 10 stroke patients, MI was used 

in addition to both conventional physiotherapy and either 

synchronous (MISAO) or asynchronous action (MIAOO) 

observation for four weeks [61]. The study identified 

significantly enhanced cortical excitability and motor 

recovery of the upper limb in the MISAO group as 

compared to the MIAOO group, and concluded that MI in 

combination with synchronous action observation may 

lead to more effective neurorehabilitation in stroke 

patients than MI with asynchronous action observation. 

   Additionally, Kim et al. employed MI-based 

rehabilitation combined with physical training in stroke 

patients, and identified benefits to upper extremity motor 

function as measured using the FMA and the Wolf Motor 

Function Test [62]. Further, a study of 26 chronic stroke 

patients identified a benefit to upper extremity MI when 

used in conjunction with modified CIMT [63], and 

another investigation utilized MI with physical practice to 

enhance hand recovery [64]. Well-summarized in another 

review [65], studies by Page et al. indicated that MI 

improved function in the impaired upper limb when 

combined with conventional physiotherapy [66], task-

oriented training [67], and CIMT [68]. Authors also noted 

that these beneficial changes persisted for up to three 

months after completion of the rehabilitation regimens. 

Moreover, two randomized controlled trials combining an 

MI protocol and conventional physiotherapy 

demonstrated an additive benefit to MI training [69, 70], 

and a 2014 meta-analysis supported the use of MI for 

upper extremity motor rehabilitation after stroke [71]. 

Taken together, these results seem to indicate a benefit to 

MI-based rehabilitation strategies when used in 

conjunction with various conventional therapies, though 

an optimal regimen has not yet been described.” 

Although MI has become a relatively popular research 

topic, studies examining dose-dependence are relatively 

scarce. A recent investigation assessed the effectiveness of 

MI in 29 chronic stroke patients with mild hemiparesis by 

comparing MI session durations of 20, 40, and 60 minutes 

[72]. Subjects were administered 30-minute task-specific 

rehabilitation sessions 3 days/week for 10 weeks. Directly 

after these sessions, randomly selected subjects were 

administered audiotaped MI for 20, 40, or 60 minutes, 

while control groups were administered sham audiotapes. 

MI groups demonstrated reduced impairment of the 

affected arm (as measured by the FMA and the Action 

Research Arm Test (ARAT)) as compared to control 
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groups that did not receive MI training. The experimental 

group exposed to MI training for 60 minutes also 

exhibited significantly increased FMA scores as 

compared to groups exposed to MI sessions of shorter 

duration, though no such dose-dependent response was 

found for the ARAT. Overall, the authors concluded that 

task-oriented therapies were more effective when total MI 

practice times were longer.  
Despite the promising results presented in the 

preceding paragraphs, a randomized controlled trial with 

a larger population than prior investigations failed to 

uncover a therapeutic benefit to mental practice in patients 

within six months of stroke [73]. A 2011 Cochrane 

Review concluded that there exists limited evidence to 

suggest that MI (termed mental practice (MP) in their 

review) used in conjunction with other types of therapies 

is valuable for augmenting upper extremity function after 

stroke [74]. However, the group did indicate that 

“clinicians may consider the use of MP in addition to 

treatment currently used to increase upper extremity 

function after stroke” as “no evidence of side effects or 

harm was noted in the literature.”  

 

Lower Limb Training 

 

The utility of MI for gait relearning has also been studied, 

and several randomized controlled trials have supported 

the use of MI for gait rehabilitation [75-78]. Additionally, 

a 2010 review endorsed the use of MI for retraining 

locomotor skills, with the caveat that it may not be 

effective in all patients [79]. Much like MI-based upper 

extremity studies, recent investigations have focused on 

the use of MI in conjunction with other therapeutic 

techniques, with the goal of maximizing recovery. An 

investigation of 40 hemiparetic, ambulatory stroke 

patients examined the effects of MI training on muscle 

strength and gait performance [80]. Twenty patients in the 

control group underwent task-oriented, lower extremity 

training four days/week for 45-60 minutes/day for three 

weeks. In addition to the task-oriented training, the 

experimental group (n = 20) received 30 minutes of audio-

based, lower extremity training for MI practice per 

day. After three weeks, gait speed and four of the six 

muscle groups tested were significantly faster and 

stronger, respectively, in patients in the experimental 

group as compared to the control group. Further, a pilot 

study of 20 subacute stroke patients investigated MI in 

conjunction with conventional balance training [81]. The 

experimental group performed balance training for 20 

minutes/day and an additional 10 minutes/day of MI 

training for three days/week for four weeks. The control 

group received balance training for 30 minutes/day. The 

preliminary evidence demonstrates that balance training 

along with MI may result in improved functional 

outcomes as compared to conventional balance training 

alone. Another group assessed the effectiveness of a task-

oriented, circuit class training program (that included MI) 

for improving gait parameters in subacute stroke patients 

[82]. The study demonstrated that circuit training in 

conjunction with MI was more effective than 

conventional rehabilitation alone, and better promoted 

independent ambulation, walking speed, and endurance, 

among other parameters. The encouraging effect of the 

MI-based task-oriented training on gait abilities persisted 

over the six weeks of follow-up used in this study. 

 

Conclusions and Future Directions 

 

Clear advantages to MI are that it is an economical, 

effective, non-invasive adjuvant to traditional stroke 

rehabilitation therapies [65]. It appears to be safe [74], and 

could feasibly be performed by patients at home after 

some instruction. Additionally, MI can be applied to each 

stage of stroke rehabilitation, permitting patients to begin 

training earlier, even in states of flaccid paralysis [83]. A 

number of experiments have investigated the ability of 

post-stroke patients to perform MI, yielding conflicting 

results. Not surprisingly, studies that have examined the 

role of MI in rehabilitation regimens for stroke patients 

have also generated mixed results regarding its efficacy. 

Future MI studies therefore, should classify patients based 

on specific lesion type and location in order to address the 

patient populations for which MI is most effective. Indeed, 

the results of a 2016 systematic review indicate that for 

patients with lesions to specific neural structures, 

including the frontal lobe, parietal lobe, and basal ganglia, 

MI may not be an appropriate rehabilitation method [27]. 

Further, factors including the training effects of MI, 

patient selection, stroke stage (acute, subacute, chronic) 

and the ideal manner in which to integrate MI with 

conventional physiotherapy techniques are critical to 

designing appropriate MI trials [84]. MI treatment 

protocols, dosage, and timing are also issues that should 

be considered in subsequent randomized clinical trials in 

order to conclusively identify the effect of MI practice in 

stroke rehabilitation.  
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