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Purpose: To analyse the role of von Hippel-Lindau (VHL) 
and transforming growth factor β-induced (TGFBI) in syn-
ergistic mechanisms of 5-aza-2’-deoxycytidine (DAC) and 
paclitaxel (PTX) against renal cell carcinoma (RCC). 

Methods: To elucidate the role in the synergy between DAC 
and PTX against RCC cells, TGFBI expression was regu-
lated using siRNA technology and an expression vector 
containing the full-length cDNA for TGFBI was also trans-
fected into RCC cells. The proliferation of RCC cells was 
evaluated using the WST-1 assay and TGFBI expression 
was detected by real-time PCR (RT-PCR), and Western blot. 

Results: The results indicated that the expression of TGF-
BI was significantly decreased by DAC or PTX alone in vi-
tro and in vivo. Moreover, the combination of DAC and PTX 
caused a synergistic decrease in the expression of TGFBI in 

RCC cells. We also investigated the effect of VHL-TGFBI 
signaling on the synergy between DAC and PTX, although 
the synergy between the two medications was not abolished 
by interfering with VHL activity or TGFBI expression. RCC 
cells without VHL activity and RCC cells expressing high 
levels of TGFBI displayed an increased synergistic effect 
compared to control cells. 

Conclusions: Our study suggests that VHL-TGFBI sig-
naling is involved in the synergy between DAC and PTX 
against RCC cells. In addition, the synergy between DAC 
and PTX is more effective in VHL inactive RCC cells.

Key words: 5-aza-2’-deoxycytidine, paclitaxel, renal cell 
carcinoma, transforming growth factor beta-induced, von 
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Human RCC is the most frequent and lethal 
malignancy of the kidney, and nearly 85% of RCCs 
are clear cell renal carcinomas [1]. Although RCC 
at an early stage is considered to be a local dis-
ease, 30% of RCC patients who present with limit-
ed disease at the time of diagnosis develop metas-
tasis in 3 years [2] and the prognosis of advanced 
RCC is very poor [3].

Until recently, therapeutic options for ad-
vanced RCC are still limited, and RCC is usual-

ly resistant to conventional chemotherapy [4,5]. 
Recommended treatment options include immu-
notherapy, monoclonal antibodies, inhibition of 
signal transduction, and targeted treatments [6-
9]. Some studies have indicated that DAC, a DNA 
methyltransferase inhibitor, is a candidate for the 
treatment of various tumors [10-13]. In a previous 
study, we confirmed the anti-proliferative effect 
of DAC against RCC. Moreover, DAC combined 
with PTX can synergistically inhibit the growth of 
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RCC cells; however, the detailed molecular mech-
anisms and pathways involved in the synergy be-
tween the two medications remain unknown [14]. 
In a corollary study, we investigated the synergis-
tic mechanisms of both medications using cDNA 
microarray analysis, the results of which suggest-
ed that DAC and/or PTX significantly decreased 
the expression of TGFBI in RCC cell lines, thus 
indicating that TGFBI may be involved in the syn-
ergy between DAC and PTX against RCC [15].

TGFBI, a target of TGF-β1 (also known as 
BigH3), is a 68 kDa extracellular matrix (ECM) 
protein with an Arg-Gly-Asp (RGD) sequence 
and four fasciclin-1 (FAS1) domains [16,17]. TG-
FBI has been reported to play a suppressive role 
in the development of mesothelioma and breast 
cancer cells [18]. TGFBI can also reduce the met-
astatic potential of lung and breast tumor cells in 
vitro and in vivo [19]. In contrast, TGFBI expression 
is associated with high-grade human colon cancer, 
and overexpression of TGFBI enhances the aggres-
siveness and metastatic properties of colon cancer 
cells [20]. Another study suggested that TGFBI has 
dual functions in ovarian cancer; specifically, TG-
FBI functions as a tumor suppressor or promoter 
depending on the tumor microenvironment [21]. 
TGFBI is moderately expressed in normal renal 
tissues where TGFBI is localized predominantly 
in the epithelial cells of the collecting ducts, and 
distal and proximal tubules; however, overexpres-
sion of TGFBI has been detected in RCC specimens 
[22]. Although TGFBI is associated with a number 
of cancers [23-25], the role of TGFBI in RCC has not 
been fully studied. TGFBI can bind to fibronectin, 
collagen, and integrins, and stimulate adhesion, 
migration, and proliferation in renal proximal tu-
bular epithelial cells [26] .A recent study has indi-
cated that TGFBI is a target of von VHL and TGFBI 
expression can be suppressed by VHL. Moreover, 
VHL inactivation enhances TGFBI signaling and 
increases the metastatic properties of RCC cells 
[27]. Although mRNA expression of VHL-HIF sig-
naling is not affected by DAC and/or PTX in mi-
croarray analysis, the effect of VHL activity on the 
synergy of the two agents as a regulator of TGFBI 
remains unknown.

In the current study we investigated the ex-
pression of TGFBI regulated by DAC and/or PTX 
in RCC cells, and analyzed the role of VHL and 
TGFBI in synergistic mechanisms of DAC and PTX 
against RCC. We speculated that VHL-TGFBI sig-
naling maybe involved in the synergy between 
DAC and PTX against RCC and that TGFBI may 
serve as a therapeutic target.

Methods

Cell culture and agents

Four VHL wild-type RCC cell lines (ACHN, Caki-1, 
Caki-2, and NC 65) and one VHL null-type RCC cell line 
(789-O) were purchased from the ATCC and cultured 
in complete medium consisting of RPMI-1640 medi-
um (Gibco, Bio-cult, Glasgow, Scotland) supplemented 
with 25 mM HEPES, 1% non-essential amino acids, 2 
mM L-glutamine, 10% heat-inactivated fetal bovine 
serum, 100 units/mL of penicillin, and 100 μg/mL of 
streptomycin. All cells were maintained as monolayers 
in 10-cm plastic dishes and incubated in a humidified 
atmosphere containing 5% CO2 at 37°C. DAC and PTX 
were purchased from Sigma (Sigma-Aldrich, MO, USA).

Reverse transctiption PCR and quantitative real time PCR

Total RNA was isolated using a RNeasy mini kit 
(Qiagen, Frankfurt, Germany) and a first-strand cDNA 
synthesis kit (Amersham Biosciences, Little Chalfont, 
UK) was used for reverse transcription. The PCR condi-
tions were determined according to the manufacturer’s 
instructions and the length of the PCR products was 
confirmed by agarose gel electrophoresis. Quantitative 
real-time PCR was performed with SYBR® Green PCR 
Master Mix (Applied Biosystems, Foster City, CA, USA) 
and the products were quantified using a GeneAmp 
5700 Sequence Detection System (Applied Biosyste-
ms). PCR reactions were performed in triplicate using 
the primers listed in Table 1.

Western blot

The following procedures were performed as pre-
viously described [28]. Protein was isolated using lysis 
buffer and the total protein concentration was exam-
ined by the Bradford dye-binding protein assay (Bio-
Rad, Richmond, CA, USA), then SDS polyacrylamide gel 
electrophoresis was performed. Antibodies to TGFBI 
and VHL were purchased from Cell Signaling Tech-
nology; an anti-β-actin monoclonal antibody (Abcam, 
Cambridge, UK) was used as an internal control. The 
immune complexes were detected with a system of 
enhanced chemiluminescence (ECL) combined with 
Western blot (Amersham, Aylesbury, UK).

Transfection and siRNA

A total of 1×106 RCC cells were seeded in complete 
medium without antibiotics and incubated to grow un-
til cells reached 40-60% confluence. Then, the cells were 
transfected with siRNA oligonucleotides or scrambled 
siRNA controls using Lipofectamine 2000 (Invitrogen, 
Carlsbad, CA, USA). After continuous incubation of the 
cells for 2 days, TGFBI or VHL expression was deter-
mined by RT-PCR and Western blot analysis. The siR-
NA oligonucleotide sequences were all designed using 
siDirect software. The target sequence, siRNA, and neg-
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ative control sequences are shown in Table 1. The RCC 
cells were also stably transfected with an expression 
vector containing full-length cDNA for TGFBI or VHL 
by Lipofectamine 2000. Blank vectors without the gene 
insert were used as controls. Monoclonal antibodies 
were selected with G418 and confirmed by RT-PCR and 
Western blot analysis.

WST-1 assay

The proliferative ability of RCC cells was analyzed 
using the WST-1 assay. Exponentially-growing RCC 
cells were harvested and 1×103 cells were seeded in 96-
well microtiter plates, then the cells were treated with 
DAC and/or PTX. After 3 days of continuous incubation, 
10 μl of WST-1 (Roche, Penzberg, Germany) were added 
into each well and the incubation was continued for an 
additional 2 hrs. The absorbance, representing the cell 
count in each well, was measured using a microculture 
plate reader (Immunoreader; Japan Intermed Co., Ltd., 
Tokyo, Japan) at 450 nm.

RCC xenografts

Animal experiments were performed in the Ani-
mal Center of Beijing Friendship Hospital and in accor-
dance with the ARRIVE guidelines. Moreover, all ani-
mal procedures that could affect animal welfare were 
reviewed and approved by the Institutional Animal 
Care and Use Committee of Beijing Friendship Hospital 
of Capital Medical University. Sixty BALB/C nude mice 
(3-4 weeks old) were randomly divided into the follow-
ing 4 groups of 15 mice each: control; DAC; PTX; and 
DAC+PTX. A total of 1×107 ACHN or Caki-1 cells were 
injected into the backs of each mouse. When the diam-
eter of the tumor reached 5 mm, DAC (2 mg/kg) and/or 
PTX (1 mg/kg) were injected into the peritoneal cavity 
of each mouse 3 times per week. The control mice were 
injected with the same volume of saline. All mice were 
observed continuously for 5 weeks and the volume of 
each tumor was recorded. After 5 weeks, the mice were 
sacrificed under deep anesthesia and the final volume 
of each tumor was measured.

Statistics

All determinations were performed in triplicate 
and the results were expressed as the mean ± standard 
deviation (SD). Statistical significance was determined 
using Student’s t-test and a p value ≤0.05 was consid-
ered significant. Calculations of synergy were deter-
mined by isobolographic analysis, as described by Ber-
enbaum [29]. Whether or not the combination of med-
ications was additive, antagonistic, or synergistic was 
determined by the location of the point on, above, or 
below the straight line joining the dosages of the two 
medications that, when given alone, induced the same 
effect as the combination of medications.

Results

Decreased TGFBI expression by DAC and/or PTX in 
vitro 

The expression of TGFBI in RCC cells was de-
creased by DAC or PTX alone based on microarray 

Figure 1. Decreased TGFBI expression by DAC and/or 
PTX was confirmed in vitro by real-time PCR. DAC in-
duced a dose-dependent decrease in TGFBI expression 
(A). The combination of DAC and PTX synergistically 
decreased the expression of TGFBI in ACHN (B) and 
Caki-1 (C). All determinations were performed in tripli-
cate and the error bar represents the SD (*p<0.05).
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analysis. Furthermore, the combined treatment 
with DAC and PTX decreased TGFBI expression 
synergistically compared to either medication 
alone. This result suggested that TGFBI may par-
ticipate in the synergy of the two medications 
against RCC. We further investigated the results 
of microarray analysis by real-time PCR (Figure 
1) and Western blot analysis (data not shown). 
DAC (Figure 1A) and PTX (Figure 1B, 1C [results 
for ACHN and Caki-1 are shown]) each induced a 
dose-dependent down-regulation of TGFBI expres-
sion in all RCC cells. Moreover, DAC (0.5 and 1 μM) 
enhanced the decrease in TGFBI expression induced 
by PTX, and the combined treatment with DAC and 
PTX synergistically decreased TGFBI expression in 
all RCC cell lines (Figure 1B, 1C [results for ACHN 
and Caki-1 are shown]).

Decreased TGFBI expression by DAC and/or PTX in vivo

We further investigated the regulation of TG-

Figure 2. Decreased TGFBI expression by DAC and/or 
PTX in vivo by real-time PCR (A), RT-PCR (B), and West-
ern blot analysis (C). DAC or PTX alone decreased the ex-
pression of TGFBI; the combination of DAC and PTX sig-
nificantly decreased the expression of TGFBI in ACHN 
and Caki-1 (p<0.05). All determinations were performed 
in triplicate and the error bar represents the SD.

Figure 3. Effect of TGFBI on the synergy between DAC 
and PTX. Expression vector containing the full-length 
cDNA for TGFBI was transfected into ACHN and Caki-
1. TGFBI expression was also decreased using siRNA 
technology. All transfections were confirmed by RT-
PCR (A) and Western blot analysis (B). Regardless of 
the expression of TGFBI, the synergy between DAC and 
PTX was observed in all RCC cell lines and a higher syn-
ergistic effect was found in RCC cells expressing high 
levels of TGFBI (C, D, E; p<0.05).
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FBI expression by DAC and/or PTX in RCC xeno-
grafts of BALB/C nude mice by RT-PCR (Figure 
2A), RT-PCR (Figure 2B), and Western blot anal-
ysis (Figure 2C). DAC and PTX alone significant-
ly decreased TGFBI expression. Moreover, the 
combination of DAC and PTX synergistically de-
creased the expression of TGFBI compared to DAC 
or PTX alone. These results suggest that the sup-
pression of TGFBI expression by DAC and/or PTX 
is involved in the synergy of the two medications 
acting against RCC in vivo.

Effect of TGFBI on the synergy of DAC and PTX

We analyzed the effect of TGFBI on the syn-
ergy of DAC and PTX against RCC. To obtain 
monoclonal RCC cell lines, an expression vector 
containing the full-length cDNA for TGFBI was 
stably transfected into ACHN and Caki-1, and TG-
FBI expression was also transiently decreased 
using siRNA technology. All transfections were 
confirmed by RT-PCR (Figure 3A) and Western 
blots (Figure 3B). Compared to control cells, RCC 
cells expressing low levels of TGFBI exhibited 

a decreased sensitivity to DAC or PTX based on 
the WST-1 assay. In contrast, RCC cells express-
ing high levels of TGFBI exhibited an increased 
sensitivity to DAC or PTX (Figure 3C). Regardless 
of the level of expression of TGFBI, the synergy 
between DAC and PTX in all RCC cell lines was 
demonstrated by isobolographic analysis. More-
over, DAC enhanced the sensitivity of RCC cells 
to PTX effectively and a higher synergistic effect 
was observed in RCC cells expressing high levels 
of TGFBI compared to RCC cells expressing low 
levels of TGFBI (Figure 3D, 3E).

Effect of VHL activity on the synergy between DAC 
and PTX

A previous study indicated that the loss of 
VHL activity is correlated with increased TGFBI 
expression, and TGFBI is a target of VHL [27]. 
Therefore, we analyzed the effect of VHL activi-
ty on the synergy between DAC and PTX against 
RCC. VHL activity in Caki-1 was suppressed by 
siRNA technology, and VHL activity in 789-O was 
enhanced by transfection with the VHL vector. All 

Figure 4. Effect of VHL activity on the synergy of DAC and PTX. Expression vector containing the full-length 
cDNA for VHL was transfected into ACHN and Caki-1. VHL activity was also decreased using siRNA technology. 
All transfections were confirmed by RT-PCR (A) and Western blot analysis (B). Regardless of VHL activity, the 
synergy between DAC and PTX was observed in all RCC cell lines and a higher synergistic effect was found in 
VHL-inactive RCC cells (C, D ;p<0.05).



VHL-TGFBI in synergy of DAC and PTX against RCC 505

JBUON 2017; 22(2): 505

Running title: 

transfections were evaluated by RT-PCR (Figure 
4A) and Western blot analysis (Figure 4B). The 
VHL-active RCC cells had high levels of VHL ex-
pression and low levels of TGFBI expression. In 
contrast, the VHL-inactive RCC cells had low lev-
els of VHL expression and high levels of TGFBI 
expression. Moreover, regardless of the activity 
of VHL, the synergy between DAC and PTX was 
observed in all RCC cell lines; however, DAC more 
effectively increased the sensitivity of RCC cells 
to PTX and a higher synergistic effect was found 
in VHL-inactive RCC cells compared to VHL-ac-
tive RCC cells (Figure 4C, 4D).

Discussion

TGFBI expression was first substantiated by 
Akhtar et al. in human lung adenocarcinoma cells 
after stimulation with TGF-β [30]. Until now, TGF-
BI expression has been detected in human organs, 
such as lung, bone, bladder, cornea, skin, and kid-
ney [31]. TGFBI can provoke various changes in cel-
lular behavior, which include modifying prolifera-
tion [32,33], differentiating epithelial cells [34,35], 
depositing extracellular matrix components [36], 
inhibiting angiogenesis [37], enhancing cellular 
metastasis, and altering the secretion of enzymes 
[38,39]. TGFBI is also involved in some human dis-
eases, such as corneal melorheostosis, osteogene-
sis, dystrophies, atherothrombosis, diabetic angi-
opathy, and restenosis [40-42]. Although TGFBI is 
associated with numerous cancers, the function of 
TGFBI is complex, and the role of TGFBI in RCC 
remains unknown.

In a previous study, we showed that DAC in-
creases the susceptibility of RCC cells to PTX by 
enhancing PTX-induced apoptosis and cell cycle 
arrest in G2/M [14]. Furthermore, to reveal the mo-
lecular mechanisms involved in the synergy of the 
two agents, a microarray analysis was performed 
and the results suggested that TGFBI expression 
was decreased significantly by DAC or PTX alone, 
and TGFBI expression was synergistically de-
creased by the combination of the two medications 
in RCC cells [15]. Therefore, we further confirmed 
the results from the microarray analysis in the 
current study, and our results indicated that DAC 
and PTX synergistically decreased the expression 
of TGFBI compared to DAC or PTX alone in vitro. 
Moreover, the combination of DAC and PTX also 
significantly suppressed TGFBI expression in RCC 
xenografts of BALB/C nude mice, which was sim-
ilar to the results obtained in vitro. Thus, TGFBI is 
involved in promoting the synergy between DAC 

and PTX against RCC cells. Although we demon-
strated the participation of TGFBI in the synergy 
between DAC and PTX, interventions in TGFBI ex-
pression did not abolish the synergy between the 
two medications. RCC cells expressing high levels 
of TGFBI, however, exhibited an increased syner-
gism compared to RCC cells expressing low levels 
of TGFBI, thus demonstrating that there are multi-
ple genes and pathways participating in the syner-
gy between DAC and PTX against RCC.

The VHL tumor suppressor is an import-
ant suppressor gene that plays a key role in RCC 
[43,44]. VHL recognizes the E3 ligase and ubiquiti-
nates the hypoxia-inducible transcription factor 
(HIF) to regulate the response to hypoxia [45]. A 
high mutation frequency and loss of both copies 
of VHL have been observed in RCC [46]. In a pre-
vious study, we confirmed that TGFBI expression 
is increased by VHL inactivation and loss of VHL 
function activates a secondary genetic event in the 
TGFBI signaling pathway that may enhance the 
metastatic properties of RCC cells. Thus, we also 
investigated the effect of VHL activity on the syn-
ergy of DAC and PTX against RCC in this study. De-
spite VHL activity, the synergy between DAC and 
PTX was observed in all RCC cell lines; however, 
a higher synergistic effect was found in VHL-inac-
tive RCC cells than in VHL-active RCC cells.

In conclusion, our study suggests that 
VHL-TGFBI signaling is involved in the synergy 
between DAC and PTX against RCC cells, especial-
ly in VHL-inactive and high levels of TGFBI-ex-
pressing RCC cells. These results indicate that a 
combination of DAC and PTX may be more effec-
tive in RCC without VHL activity and blocking 
TGFBI expression may provide a distinct treat-
ment strategy for patients with advanced RCC. Fi-
nally, although TGFBI is considered to be an im-
portant gene in some malignancies and is highly 
expressed in RCC tissues, further research is re-
quired to elucidate the molecular mechanisms of 
TGFBI in human RCC.
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